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Abstract This paper is concerned with an initial boundary value problem for strictly convex conser-

vation laws whose weak entropy solution is in the piecewise smooth solution class consisting of finitely

many discontinuities. By the structure of the weak entropy solution of the corresponding initial value

problem and the boundary entropy condition developed by Bardos–Leroux–Nedelec, we give a con-

struction method to the weak entropy solution of the initial boundary value problem. Compared with

the initial value problem, the weak entropy solution of the initial boundary value problem includes

the following new interaction type: an expansion wave collides with the boundary and the boundary

reflects a new shock wave which is tangent to the boundary. According to the structure and some global

estimates of the weak entropy solution, we derive the global L1-error estimate for viscous methods to

this initial boundary value problem by using the matching travelling wave solutions method. If the

inviscid solution includes the interaction that an expansion wave collides with the boundary and the

boundary reflects a new shock wave which is tangent to the boundary, or the inviscid solution includes

some shock wave which is tangent to the boundary, then the error of the viscosity solution to the invis-

cid solution is bounded by O(ε1/2) in L1-norm; otherwise, as in the initial value problem, the L1-error

bound is O(ε| ln ε|).
Keywords scalar conservation laws, initial boundary value problem, global weak entropy solution,

error estimate of viscous methods
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1 Introduction
We consider the initial boundary problem for the scalar conservation laws:

⎧
⎪⎨

⎪⎩

ut + f(u)x = 0, x > 0, t > 0,

u(x, 0) = u0(x), x > 0,

u(0, t) = ub(t), t > 0,

(1.1)

where the flux f ∈ C2 satisfies
(A1) f ′′ ≥ α > 0, f(0) = f ′(0) = 0.

The viscosity method approach to (1.1) is to solve the parabolic equation with initial boundary
conditions: ⎧

⎪⎨

⎪⎩

(vε)t + f(vε)x = ε(vε)xx, x > 0, t > 0,

vε(x, 0) = v0(x), x ≥ 0,

vε(0, t) = vb(t), t ≥ 0,

(1.2)

where ε > 0 is a small viscosity parameter.
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The initial boundary value problem of scalar conservation laws plays an important roles
in the mathematical modelling and simulation of the practical problem of the one-dimensional
sedimentation processes and traffic flow on highways [1–5]. Bardos et al. [6] established the
existence and uniqueness of the weak entropy solution in the BV-setting for the initial boundary
value problems of scalar conservation laws, respectively, by the vanishing viscosity method
and by Kruzkov’s method [7] (about proving the existence of the solution of the initial value
problem for conservation laws by the vanishing viscosity method, see also [8–10] etc.). The main
difficulty for scalar conservation laws with a boundary effect is to have a good formation of the
boundary condition. Namely, for a fixed initial value as (1.1)2, we really cannot impose such
a condition on the boundary as (1.1)3, and the boundary condition is necessarily linked to the
entropy condition (The approach for dealing with the boundary in [6] has been followed by many
authors [3, 11–15], who extended the previous results in different directions). In other words,
the weak entropy solution u(x, t) for (1.1) does not admit a trace at the boundary, namely,
u(0, t) does not always equal ub(t), whereas, as a viscosity approximation of the weak entropy
solution for (1.1), the solution of the initial boundary value problems of parabolic Equation
(1.2) does admit a fixed trace at the boundary. Therefore, it is very interesting to consider
the error estimates for the viscosity approximation for the initial boundary problems of scalar
conservation laws.

For the problem without a boundary, i.e., the initial value problem, the asymptotic con-
vergence of the solution of the viscous problem to the corresponding discontinuous solution
of the inviscid problem has been the main driving force for the mathematical theory of shock
waves from both theoretical and numerical point of view. Substantial progress has been made
in the past in this regard, pioneered by Hopf [16], Lax [17], Oleinik [18] and Kruzkov [7] etc.
For the BV entropy solution, Kuznetsov [19] was the first to establish the half-order rate of
L1-convergence for the viscosity approximation and monotone scheme. Tang–Teng [20] and
Sabac [21] proved that this half-order rate of convergence is optimal in the BV solution class.
However, for convex conservation laws with a piecewise smooth solution, the L1-convergence
rate can be improved to the first-order, see e.g., Teng–Zhang [22] for the monotone scheme,
Tang–Teng [23] for the viscosity approximation and Teng [24] for the relaxation approximation,
where the matching travelling wave solutions method, developed by Goodman–Xin [25], was
used to get the first-order error estimates. This method relies on the L1-stability properties
of the approximation equations and nonlinear large time asymptotic stability of viscous shock
profiles. For the initial value problems of systems of viscous conservation laws, the stability
theory of viscous shock profiles was extensively studied by many authors in the past decade, see
e.g., [26–29]. For the initial boundary problems, see also [30–37] for recent progress. By using
the matching method, Tang–Teng [23] proved that, for convex conservation laws whose entropy
solution consists of finitely many discontinuities, the L1-error between the viscosity solution
and the inviscid solution is bounded by O(ε|lnε|), and the error bound is improved to O(ε) if
there is neither central rarefaction wave nor spontaneous shock included in the inviscid solution
(see also [38]). Later, Tadmor–Tang [39, 40] used the energy method with some bootstrap
extrapolation technique to obtain some first-order pointwise convergence results for viscous
approximations to convex scalar conservation laws with piecewise smooth solutions. Very re-
cently, for nonconvex scalar conservation laws whose weak entropy solution is in the piecewise
smooth solution class consisting of finitely many discontinuities, Tang et al. [41] proved that the
optimal rate of L1-convergence of viscous approximations is a fractional number α satisfying
1
2 < α ≤ 1.

The key point on the error estimates for the viscous approximations of the initial boundary
value problems of scalar conservation laws is a detailed description of the geometric structure
of the weak entropy solution. However, the geometric structure of the solution is much more
difficult due to the presence of the boundary. The authors in paper [3] constructed the global
weak entropy solution to the initial boundary problem on a bounded interval for some special
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initial boundary data with three pieces of constant data corresponding to the practical problem
of continuous sedimentation of an ideal suspension, but they have not obtained the general
result for all cases of three pieces of constant data. In our previous work [42], we considered the
initial boundary value problem (1.1) with three pieces of constant data, i.e., ub(t)(t > 0) is a
constant function and u0(x)(x > 0) is a function with two pieces of constant. By investigating
the interaction of elementary waves and the boundary x = 0, we clarified the structure and
boundary behavior of the weak entropy solution. It is of interest to note that there is a new
phenomenon on the geometric structure of the weak entropy solution, that is, if the central
rarefaction wave collides with the boundary x = 0, then the boundary will reflect a shock wave
under some condition. Moreover, by using the matching method, we derived the uniform L1-
error estimates for the viscosity methods. The error bound is stated as follows: If the inviscid
solution includes the interaction that the central rarefaction wave collides with the boundary
x = 0 and the boundary reflects a new shock wave, then the error of the viscosity solution to
the inviscid solution is bounded by O(ε1/2) in L1-norm; otherwise, the L1-convergence rate is
similar to that of the initial value problem in [23].

In this paper, we will construct the global weak entropy solution and establish an L1-
convergence rate for the viscosity methods to the initial boundary value problem (1.1) with
piecewise smooth initial data and constant boundary data. In Section 2, we give a construction
method to the weak entropy solution of this initial boundary value problem by using the weak
entropy solution of the initial value problem and boundary entropy condition. Then from
the geometric structure of the weak entropy solution, we establish some global estimates of
the weak entropy solution, which are very important in discussing the rate of convergence for
viscosity approximation methods to conservation laws. In Section 3, we extend the analysis used
in [23, 42] to our problem and derive the global error estimates for viscous approximations.
Specifically, if the inviscid solution includes the interaction that an expansion wave collides
with the boundary x = 0 and the boundary reflects a new shock wave which is tangent to the
boundary, or includes some shock wave which is tangent to the boundary and is not reflected
by the boundary at this tangent time, then the error of the viscosity solution to the inviscid
solution is bounded by O(ε1/2) in L1-norm; otherwise, the L1-convergence rate is similar to
that of the initial value problem in [23].

2 Construction of Piecewise Smooth Solution

In this section, we will construct the piecewise smooth weak entropy solution for the initial
boundary problem (1.1) and establish some lemmas according to its structures, which are
needed for the error estimates.

We give the definition of the weak entropy solution to the initial boundary problems (1.1)
(also see [3, 6, 11, 15]).

Definition 2.1 A bounded and local bounded variation function u(x, t) on [0,∞) × [0,∞) is
called a weak entropy solution of the initial boundary problem (1.1), if for each k ∈ (−∞,∞),
and for any nonnegative test function φ ∈ C∞

0 ([0,∞) × [0,∞)), it satisfies the following in-
equality

∫ ∞

0

∫ ∞

0

{|u − k|φt + sgn(u − k)(f(u) − f(k))φx}dxdt

+
∫ ∞

0

sgn(ub(t) − k)(f(u(0, t)) − f(k))φ(0, t)dt +
∫ ∞

0

|u0(x) − k|φ(x, 0)dx ≥ 0. (2.1)

For the initial boundary value problem (1.1) whose initial data and boundary data are
general bounded variation functions, the existence and uniqueness of the global weak entropy
solution in the sense of (2.1) have been obtained, and the global weak entropy solution satisfies
the following boundary entropy condition (2.2) (see also [11, 3, 15]):
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Lemma 2.2 If u(x, t) is a weak entropy solution of (1.1), then,

u(0, t) = ub(t) or
f(u(0, t)) − f(k)

u(0, t) − k
≤ 0, k ∈ I(u(0, t), ub(t)), k �= u(0, t), a.e. t ≥ 0, (2.2)

where I(u(0, t), ub(t)) = [min{u(0, t), ub(t)}, max{u(0, t), ub(t)}].
The following lemma is easy to prove by Definition 2.1 and Lemma 2.2 (see also [15, 43]),

which will be used to construct the piecewise smooth solution of (1.1):
Lemma 2.3 Under the assumption (A1), a piecewise smooth function u(x, t) with piecewise
smooth discontinuity curves is a weak entropy solution of (1.1) in the sense of (2.1), if and only
if the following conditions are satisfied :

(1) u(x, t) satisfies equation (1.1)1 on its smooth domains;
(2) If x = x(t) is a weak discontinuity of u(x, t), then dx(t)

dt = f ′(u(x(t), t)); if x = x(t) is

a strong discontinuity of u(x, t), then dx(t)
dt = f(u−)−f(u+)

u−−u+ (Rankine–Hugoniot condition) and
u− > u+ (Lax′s shock condition), where u± = u(x(t) ± 0, t);

(3) The boundary entropy condition (2.2) holds;
(4) u(x, 0) = u0(x) a.e. x ≥ 0.
Before carrying out our construction work, we make the following assumptions to the initial

boundary data:
(A2) u0(x)(x > 0) is a bounded and piecewise C2-smooth function with a finite number of

discontinuious points γi, u0(γi ± 0) and u̇0(γi ± 0) exist and are finite;
(A3) ü0 ∈ L1([0,∞)) and limx→+∞ ȧ(u0(x)) = 0;
(A4) a(u0(x)) has a finite number of inflection points and a(u0) is sufficiently smooth near

its negative minimum points;
(A5) ub(t) ≡ u− is a constant function;

where a(u) = f ′(u), ȧ(u0(x)) := d
dx (a(u0(x))), u̇0(x) := du0(x)

dx , ü0(x) := d2u0(x)
dx2 .

The behavior and structure of the weak entropy solution for the initial value problem of
scalar conservation laws have been studied for many years, see for example [17, 18, 44–47]. In
particular, Tadmor–Tassa [44] proved that if the initial speed has a finite number of decreasing
inflection points, then it bounds the number of future shock discontinuities.

Basing on the analysis method in [42, 44], we now use Lemma 2.3 to construct the weak
entropy solution of the initial boundary value problem (1.1) under the assumptions (A1)–(A5).

Consider the following Cauchy problem:
⎧
⎪⎨

⎪⎩

v
(0)
t + f(v(0))x = 0, −∞ < x < ∞, t > 0,

v(0)(x, 0) =

{
u−, x < 0,

u0(x), x > 0.

(2.3)

As proved in [44], under the assumptions (A1)–(A4), the weak entropy solution v(0)(x, t)
of (2.3) is bounded and consists of a finite number of C2-smooth pieces, and the number of
disjoint shock curves is less than or equal to the number of negative minima of ȧ(v(0)(x, 0)) and
the negative jump of v(0)(x, 0).
Remark 2.1 For the Cauchy problem (2.3), a negative minimum point of ȧ(u0) may form a
new shock at a future time.

According to the solution structures of the Cauchy problem (2.3), we construct the weak
entropy solution of the initial boundary problem (1.1) by dividing our problem into three cases.
Case (I) A shock wave x = X0(t) emanates at the point (0, t0) in the x-t plane (where
t0 = 0), with negative original speed for the problem (2.3).

The shock wave x = X0(t) perhaps interacts with those elementary waves (including the
shock wave, expansion wave, compression wave and constant state) lying on its right. We
denote the resulting shock still by x = X0(t), it is regarded as an extension of the original
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shock x = X0(t). Again, if it interacts with those waves on its right, then we also denote
the resulting shock as x = X0(t), and so on. The left state of x = X0(t) is u−. By the
Rankine–Hugoniot condition, we have

Ẋ0(t) :=
dX0(t)

dt
=

f(u+) − f(u−)
u+ − u−

,

Ẍ0(t) :=
d2X0(t)

dt2
=

(f ′(u+)(u+ − u−) − (f(u+) − f(u−)))du+

dt

(u+ − u−)2
=

f ′′(η)
2

du+

dt
,

where u+ := u(X0(t) + 0, t), η is a number between u+ and u−. Thus from (A1), Ẍ0(t) and
du+

dt take the same sign. In other words, if Ẍ0(t) > 0 for t ∈ (τ1, τ2)(τ2 > τ1 ≥ 0), then the
right state of x = X0(t)(t ∈ (τ1, τ2)) is an expansion wave; if Ẍ0(t) < 0(t ∈ (τ1, τ2)), then the
right state of x = X0(t)(t ∈ (τ1, τ2)) is a compression wave; if Ẍ0(t) ≡ 0(t ∈ (τ1, τ2)), then the
right state of x = X0(t)(t ∈ (τ1, τ2)) is constant state. Moreover, noticing the property of the
initial value function, we know that x = X0(t)(t > t0) is a continuous curve consisting of a
finite number of C2-smooth pieces and has a finite number of inflection points.

If for the time interval [t0,∞), Ẋ0(t + 0) ≤ 0, then x = X0(t) lies in the second quadrant
of the x-t plane. Let u(x, t) = v(0)(x, t)|R+×R+ , where R+ denotes the interval (0,∞) and
v(0)(x, t) is the weak entropy solution of (2.3); then by Lemma 2.3, we can verify that u(x, t) is
the weak entropy solution of (1.1). This completes the construction work.

If there exists some t∗1 > t0 such that the speed of the shock x = X0(t) is non-positive for
t < t∗1, and zero at t = t∗1, and positive for t in some right deleted neighborhood of t∗1, then we
can not take u(x, t) = v(0)(x, t)|R+×R+ as the weak entropy solution of (1.1), since this u(x, t)
does not satisfy the boundary entropy condition (2.2) for t > t1, where t1(> t0) is the time at
which the characteristic line from the point (X0(t∗1), t∗1) backward to t = 0 intersects the t-axis
(see Fig. 1(a)).

Figure 1: An expansion wave collides with the boundary x = 0 and the boundary reflects

a new shock wave which is tangent to the boundary.

Now we reconstruct the solution of (1.1). First let u(x, t) = v(0)(x, t)|R+×[t0,t1). Then in
view of Lemma 2.3, this u(x, t) is the local weak entropy solution of (1.1) on R+ × [t0, t1). Next
we will extend this solution u(x, t) to R+ × [t0,∞). Consider the following Cauchy problem:

⎧
⎪⎨

⎪⎩

(v(1))t + f(v(1))x = 0, −∞ < x < ∞, t > t1,

v(1)(x, t1) =

{
u−, x < 0,

v(0)(x, t1 − 0), x > 0.

(2.4)

Then according to [44], the weak entropy solution v(1)(x, t) of (2.4) is bounded and consists of a
finite number of C2-smooth pieces, and the number of disjoint shock curves is less than or equal
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to the number of negative minima of ȧ(v(1)(x, t1)) and the negative jump of v(1)(x, t1). For
the Cauchy problem (2.4), a negative minimum point of ȧ(v(1)(x, t1)) may form a new shock
at a future time. By the Rankine–Hugoniot condition and Lax’s shock condition, a shock wave
x = X1(t) with zero original speed and the left state u−, starting at the point (0, t1), appears in
the weak solution of (2.4) and Ẍ1(t) > 0 in some right neighborhood of t1. Perhaps x = X1(t)
interacts with other elementary waves, the resulting shock is still denoted as x = X1(t). Then
by the analysis on the interaction of elementary waves and the Rankine–Hugoniot condition
and Lax’s shock condition, x = X1(t) is continuous and consists of a finite number of C2-
smooth pieces and has a finite number of inflection points. We also notice that the right state
of x = X1(t) in some right neighborhood of t1 is an expansion wave.

According to the position of the shock x = X1(t), we construct the weak entropy solution
of (1.1) on [t1,∞) by dividing this case into the following two sub-cases:

(i) If the shock x = X1(t)(t > t1) does not enter the second quadrant of the x-t plane, or
enters from the first quadrant including the t-axis and keeps staying in the second quadrant
after some time t = tb > t1 and the shock speed of the part in the second quadrant is non-
positive, then by Lemma 2.3, u(x, t) := v(1)(x, t)|R+×[t1,∞) is the weak entropy solution of (1.1)
on R+ × [t1,∞). Thus the construction of the solution to (1.1) is complete. In this sub-case,
the weak entropy solution of (1.1) has the following geometric structure near the point (0, t1):
an expansion wave collides with the boundary x = 0, then the boundary reflects a new shock
wave which is tangent to the boundary x = 0 (at the time t = t1), which is similar to the new
geometric structure of the weak entropy solution of the initial boundary problem with three
pieces of constant data in [42] (see also Fig. 1(a)). Besides, if in sub-case (i), there holds
the possibility that there is one time interval [tb, t∗b ](t

∗
b > tb > t1) such that the shock wave

x = X1(t) stays on the first quadrant including the t-axis for t1 < t < tb and on the t-axis for
t ∈ [tb, t∗b ] and the speed of x = X1(t) is positive for t in some right deleted neighborhood of
t∗b , then the weak entropy solution of (1.1) has also the new geometric structure near the point
(0, t∗b), that is, an expansion wave hits the boundary x = 0 at t = t∗b and in the meantime the
boundary reflects a new shock wave which is tangent to the boundary at t = t∗b (see Fig. 2(a)).
If in sub-case (i), there holds the possibility that there exists tb > t1 such that x = X1(t) lies in
the first quadrant for t in some deleted neighborhood of tb and intersects the t-axis at t = tb,
then for t in this neighborhood of tb, the weak entropy solution of (1.1) includes a shock wave
which is just the shock x = X1(t) and is tangent to the boundary x = 0 at t = tb (see Fig.
2(b)).

Figure 2: The interaction of a shock wave and the boundary x = 0.

(ii) If the shock x = X1(t) enters the second quadrant from the first quadrant including the
t-axis after some time t = tb, and there exists t∗2 > tb, such that the speed of x = X1(t) is non-
positive for tb < t < t∗2 and zero for t = t∗2 and positive for t in some right deleted neighborhood
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of t∗2, then we can extend the local weak entropy solution u(x, t) of (1.1) to R+ × [t0, t2) by
taking u(x, t) = v(1)(x, t)|R+×[t0,t2), where t2 is the time at which the characteristic line from
the point (X1(t∗2), t∗2) backward to t = 0 (see Fig. 1(b)) intersects the t-axis. In order to extend
our solution to R+ × R+, we need to consider the Cauchy problem again

⎧
⎪⎨

⎪⎩

(v(2))t + f(v(2))x = 0, −∞ < x < ∞, t > t2,

v(2)(x, t2) =

{
u−, x < 0,

v(1)(x, t2 − 0), x > 0.

Repeating the above procedure, by a finite number of steps (because, from (A4), it follows that
a(v(2)(x, t2)) has a finite number of inflection points), we can construct the global weak entropy
solution of (1.1).
Case (II) A shock wave x = X0(t) emanates at the point (0, t0) in the x-t plane, with
non-negative original speed for the problem (2.3).

As in Case (I), if x = X0(t) interacts with other waves, then we denote the resulting shock
still as x = X0(t), and so on.

According to the position of the shock x = X0(t), we construct the weak entropy solution
of (1.1) by dividing this case into the following three sub-cases: (i) The shock x = X0(t)(t > t0)
does not enter the second quadrant of the x-t plane, or enters from the first quadrant including
the t-axis and keeps staying in the second quadrant after some time t = tb > t0 and the shock
speed of the part in the second quadrant is non-positive. (ii) The shock x = X0(t) enters the
second quadrant from the first quadrant including the t-axis after some time t = tb, and there
exists t∗1 > tb such that the speed of x = X0(t) is non-positive for tb < t < t∗1 and zero for t = t∗1
and positive for t in some right deleted neighborhood of t∗1. The construction method is similar
to that of Case (I).
Case (III) No shock wave emanates at the point (0, t0) for the problem (2.3).

In this case, we let x1 be the minimal point of the negative jump points of v(0)(x, 0), then
x1 > 0.

If every negative minimum point of ȧ(v(0)(x, 0)) lying on the interval [0, x1) does not lead
to a new shock, then we trace the shock, denoted by x = X1(t), starting at the point (x1, 0),
appearing in the weak entropy solution of the initial problem (2.3). As previously, we still
denote by x = X1(t) the resulting shock wave in such a way that x = X1(t) interacts with
other waves. For the position of the shock x = X1(t) we have one of the following cases: (i)
x = X1(t)(t > t0) does not enter the second quadrant of the x-t plane forever, or enters from
the first qudrant including the t-axis and keeps staying in the second quadrant after some time
and the shock speed of the part in the second quadrant is non-positive. (ii) x = X1(t)(t > t0)
enters the second quadrant from the first quadrant including the t-axis after some time t = tb,
and there exists t∗1 > tb such that the speed of x = X1(t) is non-positive for tb < t < t∗1 and
zero for t = t∗1 and positive for t in some right deleted neighborhood of t∗1. The construction
method of the weak entropy solution of (1.1) is similar to that of Case (I).

If some negative minimum points ζi(i = 1, 2, . . . , k0) (ζ1 < ζ2 < · · · < ζk0) of ȧ(v(0)(x, 0))
lying on the interval [0, x1) lead to new shocks after some time, then as previously, by tracing
the resulting shock x = X1(t) of the new shock to which was led by the negative minimum point
ζ1 of ȧ(v(0)(x, 0)), we can construct the solution of (1.1). By the position and the speed sign
of the shock x = X1(t), we construct the solution of (1.1) to the following cases, respectively:
(i) x = X1(t) lies in the second quadrant all the time and the shock speed is non-positive, or
x = X1(t) never enters the second quardrant, or x = X1(t) enters the second quadrant from the
first quadrant including the t-axis and keeps staying in the second quadrant after some time
and the shock speed of the part in the second quadrant is non-positive. (ii) Before some time,
x = X1(t) always stays in the second quadrant and the sign of the shock speed is changed from
negative to positive, or x = X1(t) enters the second quadrant from the first quadrant including
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the t-axis after some time t = tb and keeps staying in the second quadrant and the sign of the
corresponding shock speed is changed from negative to positive between the times t = tb and
t = tc (tb < tc). The construction method of the weak entropy solution of (1.1) is also similar
to that of Case (I).

Therefore, we accomplish the construction of the weak entropy solution to the initial bound-
ary problem (1.1).

From the above construction procedure, we know that under the assumptions (A1)–(A5),
the weak entropy solution of (1.1) is bounded and piecewise smooth with finitely many discon-
tinuities. The key point of the above given construction method for the weak entropy solution
of this initial boundary value problem is to use the structure of the weak entropy solution of the
corresponding initial value problem (2.3). It mainly refers to the behavior of the leftmost shock
wave appearing in the weak entropy solution of the initial value problem (2.3). In particular,
if the leftmost shock wave stays in the second quadrant and the sign of the shock speed is
changed from negative to positive before some time, or enters the second quadrant from the
first quadrant including the t-axis after one time and keeps staying in the second quadrant, and
the sign of the corresponding shock speed is changed from negative to positive before another
time, then we need to find some time, such as t1 or t2 in Case (I), and take the time as the
new initial time to reconstruct the solution, layer by layer. Compared with the initial value
problem, the weak entropy solution of the initial boundary value problem (1.1) includes the
following new interaction type: an expansion wave collides with the boundary x = 0 and the
boundary reflects a new shock wave which is tangent to the boundary x = 0. The interaction
of a shock wave and the boundary x = 0 includes the following two types: the shock wave is
absorbed by the boundary x = 0 at some time, which is called the absorbed time of the shock
wave (see Fig. 2(a),(c),(d)); the shock wave hits the boundary x = 0 at some time and comes
back to the first quadrant after the same time (see Fig. 2(b)), at this time the shock wave is
tangent to the boundary x = 0.

From now on, let t0 = 0 and tp(p = 1, 2, . . . , P ) (where t0 < t1 < t2 < · · · < tP ) be the
absorbed time of the shock wave, or the intersection time of two or more shock waves, or the
time at which the boundary x = 0 reflects a new shock or there is a spontaneous formation of a
shock by a compression wave, or the time such that the shock wave is tangent to the boundary
x = 0 at this time and lies in the first quadrant of the x-t plane in some deleted neighborhood
of this time. For a fixed T > tP , we let tP+1 = T .

Although the weak entropy solution of the initial boundary value problem (1.1) includes
a new type in the sense of the global solution structure near the boundary, the solution is
the restiction of that solution of some initial value problem on the corresponding domain
R+ × [tp, tp+1)(p = 0, 1, . . . , P ). From this character on the solution construction, we can
still establish the following global estimates on derivatives of the weak entropy solution of (1.1),
which are similar to those of the initial value problem (see [23]), and are necessary for the error
analysis.

Lemma 2.4 Assume that x = X(t) is a shock curve satisfying

Ẋ(t) =
f(u+) − f(u−)

u+ − u− , u± := u(X(t) ± 0, t),

and that a(u0) is sufficiently smooth in the neighborhood of its negative minimum points. If
x = X(t) is formed at t = 0, then

∫ T

0

|ux(X(t) ± 0, t)|dt ≤ C.

If x = X(t) is formed at t = tp > 0, then
∫ T

tp+δ

|ux(X(t) ± 0, t)|dt ≤ C| ln δ| + C,
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where δ is a sufficiently small constant, T > tP is a fixed time before which the shock x = X(t)
is not absorbed by the boundary x = 0, and C > 0 is a constant independent of δ.
Lemma 2.5 Assume that a central rarefaction wave is formed at x = z. Let x = XL(t) and
x = XR(t) be left and right boundaries of the rarefaction wave, respectively. If ȧ(u0(z + 0)) is
not a negative minimum, then

|ux(XR(t) + 0, t)| ≤ C, |ux(XR(t) − 0, t)| ≤ Ct−1.

The above results hold before the rarefaction wave is interacted by a shock and x = XR(t) hits
the boundary. If ȧ(u0(z + 0)) is a negative minimum whose minimal point will lead to a new
shock at a future time, then

ux(XR(t) + 0, t)| ≤ C(t − tp)−1, |ux(XR(t) − 0, t)| ≤ Ct−1,

for t < tp, where tp = −1/ȧ(u0(z + 0)). The curve x = XR(t) will become a shock after t = tp.
Similar results, based on ȧ(u0(z − 0)), hold for XL(t).
Lemma 2.6 Under the assumptions (A1)–(A5), the weak entropy solution u(x, t) of (1.1)
satisfies

∫ tp+1−δ

tp+δ

|ux(0+, t)| ≤ C| ln δ| + C

and ∫ tp+1−δ

tp+δ

‖uxx(·, τ )‖L1([0,∞))dτ ≤ C| ln δ| + C, p = 0, 1, 2, . . . , P,

provided that δ is sufficiently small, where C is a constant independent of δ.

3 Error Estimates

Throughout this section, the norm ‖ · ‖ denotes the standard L1-norm ‖ · ‖L1([0,∞)), C or C(t)
denotes a positive constant independent of ε, and c denotes a positive constant independent of
t and ε, but with different values at different places.

We now give the main result in this paper.
Theorem 3.1 Suppose that v0(x)−u0(x) → 0 (as x → ∞) and v0(·)−u0(·) ∈ L1. Under the
assumptions (A1)–(A5), if vε is the smooth solution of (1.2) and u is the weak entropy solution
of (1.1), then the following error estimate holds for any T ≥ 0 :

sup
0≤t≤T

‖vε(·, t) − u(·, t)‖ ≤ ‖v0(·) − u0(·)‖ + C(T )ε1/2. (3.1)

We use the matching method to prove this theorem. As mentioned before, this method
relies on the behavior of the travelling solutions of the approximation equation and L1-stability
properties of the nonhomogeneous viscous equations. We first introduce the L1-stability lemma
and the travelling wave solution lemma.
Lemma 3.2 Let v(i)(x, t) (i = 1, 2) be continuous and piecewise smooth solutions of the
following equations:

(v(i))t + f(v(i))x − ε(v(i))xx = gi(x, t), x > 0, t > d ≥ 0, i = 1, 2. (3.2)
The above equations hold for all values of x > 0 except on some curves Xm(t), 1 ≤ m ≤ M ,
where v

(i)
x may not exist. If ω := v(1) − v(2) → 0 as x → ∞, then

‖ω(·, t)‖ ≤ ‖ω(·, d)‖ +
∫ t

d

‖g1(·, τ ) − g2(·, τ )‖dτ + ε

∫ t

d

|ωx(0+, τ )|dτ

+
∫ t

d

sgn ω(0, τ )(f(v(1)(0, τ ))− f(v(2)(0, τ )))dτ

+ ε
M∑

m=1

∫ t

d

|ωx(Xm(τ ) + 0, τ ) − ωx(Xm(τ ) − 0, τ )|dτ. (3.3)
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Proof We now prove this lemma by a similar technique to that in [23] (see also [42]). It follows
from (3.2) that

ωt + (f(v(1)) − f(v(2)))x = εωxx + g1(x, t) − g2(x, t). (3.4)

If ω ≥ 0 or ω ≤ 0 for all x, then straightforward integration on the above equation gives
(3.3). Let (0 <)p1(t) < p2(t) < · · · be the points such that at those points ω changes signs. Let
αj be the sign of ω in (pj , pj+1) (j = 0, 1, 2, 3, . . . , p0 = 0). Multiplying (3.4) by αj (j = 1, 2, . . .)
and integrating the resulting equation over (pj , pj+1) gives

αj

∫ pj+1

pj

ωtdx = ε(αjωx(pj+1 − 0, t) − αjωx(pj + 0, t))

+ αj

∫ pj+1

pj

(g1(x, t) − g2(x, t))dx

+ ε
∑

pj<Xm<pj+1

αj(ωx(Xm(t) + 0, t) − ωx(Xm(t) − 0, t)). (3.5)

Since ω(pj , t) = ω(pj+1, t) = 0 and αjω ≥ 0 for x ∈ (pj , pj+1), we have
d

dt

∫ pj+1

pj

|ω|dx = αj

∫ pj+1

pj

ωtdx.

Moreover, observing that αjωx(pj+1 − 0, t) ≤ 0 and αjωx(pj + 0, t) ≥ 0 (j = 1, 2, . . .) (because
αjωx(pj+1−0, t) = αj limx→p−

j+1

ω(x,t)−ω(pj+1,t)
x−pj+1

= limx→p−
j+1

αjω(x,t)
x−pj+1

≤ 0), we obtain from (3.5)
that

d

dt

∫ pj+1

pj

|ω|dx ≤
∑

pj<Xm<pj+1

εαj |ωx(Xm(t) + 0, t) − ωx(Xm(t) − 0, t)|

+
∫ pj+1

pj

∣
∣g1(x, t) − g2(x, t)

∣
∣dx.

Since the above inequality is true for all j ≥ 1, we have
d

dt

∫ p∗

p1

|ω|dx≤
∑

p1<Xm<p∗
ε|ωx(Xm(t)+0, t)−ωx(Xm(t)−0, t)|+

∫ p∗

p1

|g1(x, t)−g2(x, t)|dx, (3.6)

where p∗ = supj pj . If p∗ < ∞, using a similar method to that above gives
d

dt

∫ ∞

p∗
|ω|dx ≤ ε

∑

Xm>p∗
|ωx(Xm(t)+0, t)−ωx(Xm(t)−0, t)|+

∫ ∞

p∗
|g1(x, t)−g2(x, t)|dx. (3.7)

In obtaining the last inequality, we have used the fact that ω → 0 as x → ∞. In order to get
(3.3), we need to estimate d

dt

∫ p1

0
|ω|dx. Multiplying (3.4) by α0 and integrating the resulting

equation over (0, p1) gives
d

dt

∫ p1

0

|ω|dx = α0(f(v(1)(0, t)) − f(v(2)(0, t))) + α0

∫ p1

0

(g1(x, t) − g2(x, t))dx

+ ε(α0ωx(p1 − 0, t) − α0ωx(0+, t))

+
∑

0<Xm<p1

α0ε(ωx(Xm(t) + 0, t) − ωx(Xm(t) − 0, t)),

then
d

dt

∫ p1

0

|ω|dx ≤ ε|ωx(0+, t)| +
∫ p1

0

|g1(x, t) − g2(x, t)|dx

+ sgn ω(0, t)(f(v(1)(0, t)) − f(v(2)(0, t)))

+
∑

0<Xm<p1

ε|ωx(Xm(t) + 0, t) − ωx(Xm(t) − 0, t)|. (3.8)

Using (3.6)–(3.8), we obtain the desired result.
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From [23], we have the following travelling wave lemma.
Lemma 3.3 Let u+(t) < u−(t) be two given functions, and X(t) be defined by the equation

dX(t)
dt

=
f(u+) − f(u−)

u+ − u− .

Then there is a unique travelling wave Vε(x − X(t); u−, u+) of (1.2)1, where Vε(ξ; u−, u+) be
defined implicitly by

ξ = ε

∫ Vε

1
2 (u−+u+)

(Φ(u; u−, u+))−1du, φ(u; u−, u+) = f(u) − f(u−) − f(u+) − f(u−)
u+ − u− (u − u−).

With respect to ξ, the function Vε(ξ; u−, u+) is a decreasing function satisfying

Vε(−∞; u−, u+) = u−, Vε(0; u−, u+) =
1
2
(u− + u+), Vε(+∞; u−, u+) = u+.

It also satisties the following properties :
(1) |Vε(ξ; u−, u+) − H(ξ; u−, u+)| ≤ (u− − u+) exp{−α(u− − u+)|ξ|/2ε};
(2) ‖Vε(•; u−, u+) − H(•; u−, u+)‖L1(−∞,∞) ≤ cε;
(3) ‖(Vε)u−(•; u−, u+)u̇− + (Vε)u+(•; u−, u+)u̇+ − H(•; u̇−, u̇+)‖ ≤ Cε(|ux(X(t) + 0, t)| +

|ux(X(t) − 0, t)|);
where α is determined by (A1), (Vε)u± indicate the partial derivatives for Vε with respect to the
parameters u±, respectively, u̇± = d(u±)/dt, H is the so-called Heaviside function defined by

H(x; u−, u+) =

{
u−, x < 0,

u+, x > 0.

We state the main clue of the proof of Theorem 3.1. Following [23], if the weak entropy
solution u(x, t) of (1.1) contains no shock discontinuity for t ∈ (τ1, τ2) (0 < τ1 < τ2 < T < ∞),
then in view of the continuity of u in the time interval (τ1, τ2), we can directly apply Lemma 3.2
to vε(x, t) and u(x, t). Otherwise, we construct an auxiliary continuous approximation vε by
replacing jumps of all shocks in the weak entropy solution u at each fixed time t in (τ1, τ2)
with their corresponding travelling wave solutions of the approximation equation. Using the
travelling wave solution Lemma 3.3 can estimate the L1-error of vε−u. As for the L1-error
bound of vε−vε, we apply the L1-stability Lemma 3.2 to vε(x, t) and vε(x, t).
Proof of Theorem 3.1 We need to prove only that the following estimate is valid:

‖vε(·, t) − u(·, t)‖ ≤ ‖vε(·, tp) − u(·, tp)‖ + C(ε1/2 + ε| ln ε| + ε), t ∈ [tp, tp+1], (3.9)
where tp(p = 0, 1, 2, . . . , P ) is defined in Section 2. In fact, if (3.9) is true for all 0 ≤ p ≤ P ,
then we can obtain that, for any t ∈ [0, T ],
‖vε(·, t)− u(·, t)‖ ≤ ‖vε(·, t0)− u(·, t0)‖+ C(T )(ε1/2 + ε| ln ε|+ ε) ≤ ‖v0(·)− u0(·)‖+ C(T )ε1/2.

Next we prove the estimate (3.9) by dividing our problem into four cases.

3.1 Zero Shock
In this case, the weak entropy solution u of (1.1) contains no shock discontinuity in the domain
R+ × (tp, tp+1). We directly apply Lemma 3.2 to vε and u, and get, for t ∈ (tp + ε, tp+1 − ε),

‖vε(·, t) − u(·, t)‖ ≤ ‖vε(·, tp + ε) − u(·, tp + ε)‖ + ε

∫ t

tp+ε

‖uxx(·, τ )‖dτ

+ ε

∫ t

tp+ε

(|vεx(0, τ )| + |ux(0, τ )|)dτ

+
∫ t

tp+ε

sgn(u− − u(0, τ ))(f(u−) − f(u(0, τ )))dτ

+ ε
∑

k

∫ t

tp+ε

|ux(Yk(τ )±, τ )|dτ
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≤ ‖vε(·, tp + ε) − u(·, tp + ε)‖ + C(T )(ε| ln ε| + ε), (3.10)
where Yk(t)(1 ≤ k ≤ K) denotes the left or right boundary of the rarefaction waves for t ∈
(tp, tp+1). If some boundary Yk0(t) of the rarefaction wave hits the boundary x = 0 at t = t∗p,
then from now on, we stipulate that ux(Yk0±, t) = 0 for t∗p < t < tp+1. In obtaining (3.10),
we have used (2.2), Lemma 2.5 and Lemma 2.6. Since vε and u satisfy the following stability
results:

‖vε(·, τ ) − vε(·, τ0)‖ ≤ C|τ − τ0|, ‖u(·, τ ) − u(·, τ0)‖ ≤ C|τ − τ0|, (3.11)

by (3.10), we get ‖vε(·, t) − u(·, t)‖ ≤ ‖vε(·, tp) − u(·, tp)‖ + C(ε| ln ε| + ε), t ∈ [tp, tp+1].

3.2 One Shock

In this case, we suppose that the weak entropy solution u of (1.1) is continuous in R+×(tp, tp+1)
except on the shock x = X(t), i.e., there is only one shock curve x = X(t) included in u in
R+ × (tp, tp+1). According to the structure of the weak entropy solution u of (1.1), x = X(t)
is C2-smooth and satisfies one of the following possible cases:

(P1) X(tp) = 0 and X(t) > 0 for t ∈ (tp, tp+1];
(P2) X(tp) = X(tp+1) = 0 and x = X(t) > 0 for t ∈ (tp, tp+1);
(P3) X(t) > 0 for t ∈ [tp, tp+1];
(P4) X(t) > 0 for t ∈ [tp, tp+1) and X(tp+1) = 0.
Lemma 3.2 cannot be applied directly since u �∈ C(R+ × (tp, tp+1)). In order to overcome

the difficulty, we introduce the following approximation solution of u:
vε(x, t) = u(x, t) + Vε(x − X(t); u−, u+) − H(x − X(t); u−, u+), (3.12)

where u± := u(X(t) ± 0, t). It is easy to verify that, in R+ × (tp, tp+1), vε is continuous and
piecewise smooth except on the curve x = X(t), and vε(x, t) − vε(x, t) → 0 as x → +∞.

Using the same technique as in [23], by Lemmas 2.4–2.6 and Lemma 3.3, we can derive that
in its smooth domains, vε satisfies the equation

(vε)t + f(vε)x − ε(vε)xx = g(x, t),
with

‖g(·, t)‖ ≤ Cε

t
. (3.13)

Therefore, Lemma 3.2 can be applied to vε(x, t) and vε, and from (3.12), (3.13), Lemmas 2.4–2.6
and Lemma 3.3, it follows that, for t ∈ (tp + ε, tp+1 − ε),

‖vε(·, t) − vε(·, t)‖ ≤ ‖vε(·, tp + ε) − vε(·, tp + ε)‖ +
∫ t

tp+ε

‖g(·, τ )‖dτ

+ ε

∫ t

tp+ε

(|vεx(0, τ )| + |vεx(0, τ )|)dτ

+
∫ t

tp+ε

sgn(vε(0, τ ) − u−)(f(vε(0, τ )) − f(u−))dτ

+ ε

∫ t

tp+ε

|ux(X(τ )± 0, τ )|dτ

+ ε
∑

k

∫ t

tp+ε

|ux(Yk(τ ) ± 0, τ )|dτ

≤ ‖vε(·, tp + ε) − vε(·, tp + ε)‖ + C(ε + ε| ln ε|) + I0, (3.14)
where Yk(t) is defined as in Section 3.1, and

I0 :=
∫ t

tp+ε

sgn(vε(0, τ ) − u−)(f(vε(0, τ )) − f(u−))dτ.
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Using Lemma 3.3 yields
‖vε(·, t) − u(·, t)‖ ≤ cε, t ∈ (tp, tp+1). (3.15)

If we are able to prove
I0 ≤ C(ε + ε1/2), t ∈ (tp + ε, tp+1 − ε), (3.16)

then combining (3.14), (3.15) and the stability results (3.11) gives (3.9).
Next, we verify (3.16) for possible cases (P1)–(P4), respectively.

3.2.1 The Case of (P1)
By the structure of the weak entropy solution of (1.1), Ẋ(tp) ≥ 0 and for t ∈ (tp, tp+1),
u(0, t) ≡ u−, u(X(t)−0, t) = u− > u+. Then from (3.12), the smoothness of f , the boundedness
of u and Lemma 3.3, we have

I0 ≤ C

∫ t

tp+ε

|(H − Vε)(−X(τ ); u−, u+)|dτ ≤ C

∫ t

tp+ε

exp{−cαX(τ )/2ε}dτ. (3.17)

Therefore, in order that (3.16) holds, the key point is to find a suitable lower bound function
of X(t) for t ∈ [tp, tp+1].

When Ẋ(tp) > 0, there exists some t∗ ∈ (tp, tp+1) such that Ẍ(t) > 0 or Ẍ(t) ≤ 0 for
t ∈ [tp, t∗]. If Ẍ(t) ≤ 0 for t ∈ [tp, t∗], then

X(t) ≥ x∗
tp+1 − tp

(t − tp), t ∈ [tp, tp+1]. (3.18)1

If Ẍ(t) > 0 for t ∈ [tp, t∗], then

X(t) ≥ x∗∗
tp+1 − tp

(t − tp), t ∈ [tp, tp+1], (3.18)2

where x∗ = mint∈[t∗,tp+1] X(t) > 0 and x∗∗ > 0 is the minimum of x∗ and Ẋ(tp)(tp+1 − tp).
When Ẋ(tp) = 0, by the structure of the weak entropy solution of (1.1) (see Fig. 1(a),(b)

and Fig. 2(a),(b) for tp �= 0), there is t∗∗ ∈ (tp, tp+1) such that Ẍ(t) > 0 for t ∈ (tp, t∗∗) .
Since X(t)(tp < t < t∗∗) is smooth and increasing, for any given constant ε0, 0 < ε0 < X(t∗∗),
there exists tε0 ∈ (tp, t∗∗) such that X(tε0) = ε0. From the Rankine–Hugoniot condition and
the conditions (A1), (A2), we can easily verify that, for t ∈ [tp, tε0),

X(t) = X(tp) + Ẋ(tp)(t − tp) + Ẍ(l)(t − tp)2/2 ≥ c(t − tp)2, l ∈ (tp, t).
Thus we can get the following inequality:

X(t) ≥
⎧
⎨

⎩

c(t − tp)2, t ∈ [tp, tε0),
xε0

tp+1 − tε0

(t − tε0), t ∈ [tε0 , tp+1],
(3.18)3

where xε0 = mint∈[tε0 ,tp+1] X(t) > 0. Applying (3.18)1–(3.18)3 to (3.17), we obtain (3.16).

3.2.2 The Case of (P2)
By the structure of the weak entropy solution of (1.1), Ẋ(tp) ≥ 0 and for t ∈ (tp, tp+1),
u(0, t) ≡ u−, u(X(t)−0, t) = u− > u+. Then from (3.12), the smoothness of f , the boundedness
of u and Lemma 3.3, it follows that (3.17) is also valid for this case.

When Ẋ(tp+1) < 0, there exists some t∗ ∈ [tp, tp+1) such that Ẍ(t) > 0 or Ẍ(t) ≤ 0 for
t ∈ [t∗, tp+1]. If Ẍ(t) ≤ 0 for t ∈ [t∗, tp+1], then

X(t) ≥ X(t∗)
tp+1 − t∗

(tp+1 − t), t ∈ [t∗, tp+1]. (3.19)1

If Ẍ(t) > 0 for t ∈ [t∗, tp+1], then
X(t) ≥ Ẋ(tp+1)(t − tp+1), t ∈ [t∗, tp+1]. (3.19)2

Thus, using (3.19)1 and (3.19)2 we obtain, for t ∈ [t∗, tp+1],
∫ t

t∗
exp{−cαX(τ )/2ε}dτ ≤ Cε. (3.20)1
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Since X(tp) = 0, by the same technique as in case (P1), we can conclude, for t ∈ (tp, t∗], that
∫ t

tp+ε

exp{−cαX(τ )/2ε}dτ ≤ C(ε + ε1/2). (3.20)2

Consequently, (3.20)1 and (3.20)2 result in (3.16).
When Ẋ(tp+1) = 0, from the structure of the weak entropy solution of (1.1) (see Fig. 2(a),

(b), (c)), it follows that there is a t∗ ∈ (tp, tp+1) such that Ẍ(t) > 0 for t ∈ (t∗, tp+1). Since
X(t)(t∗ < t < tp+1) is smooth and decreasing, for any given constant ε0, 0 < ε0 < X(t∗), there
exists tε0 ∈ (t∗, tp+1) such that X(tε0) = ε0. Thus it is easy to verify that, for t ∈ (tε0 , tp+1],

X(t) = X(tp+1) + Ẋ(tp+1)(t − tp+1) + Ẍ(θ)(t − tp+1)2/2 ≥ c(t − tp+1)2, θ ∈ (t, tp+1),
from which, it follows that, for t ∈ [tε0 , tp+1],

∫ t

tε0

exp{−cαX(τ )/2ε}dτ ≤ ε1/2,

whereas for t ∈ (tp, tε0 ], by the same technique as in case (P1), we can obtain
∫ t

tp+ε

exp{−cαX(τ )/2ε}dτ ≤ C(ε + ε1/2).

Combining the above two inequalities gives (3.16).

3.2.3 The Case of (P3)

Let a0 := mint∈[tp,tp+1] X(t) > 0, and (H − Vε)(t) := (H − Vε)(−X(t); u−, u+). Then

X(t) ≥ a0

tp+1 − tp
(t − tp), t ∈ [tp, tp+1],

and, from which and Lemma 3.3, we have, for t ∈ [tp, tp+1],

0 < (H − Vε)(t) ≤ C exp
{

− cαa0

tp+1 − tp
· t − tp

2ε

}

:= e(t). (3.21)

By the structure of the weak entropy solution u(x, t) of (1.1), we know that u(0, t)(t ∈
(tp, tp+1)) is continuous and u(x, t) only contains a finite number of compression waves or
expansion waves or constant states near the segment of the boundary: x = 0, t ∈ (tp, tp+1).
Hence, the time interval [tp, tp+1] is composed of a finite number of the closed sub-intervals
on which u(0, t) is strictly increasing or strictly decreasing or constant, and for t ∈ (tp, tp+1),
the function u(0, t) − u− is continuous and changes its signs at most finitely many times. Let
[tp, tp+1] = ∪i0

i=1[t
(i)
p , t

(i+1)
p ] ∪ [tp, t

(1)
p ], where i0 is a nonnegative integer, t

(i0+1)
p =tp+1, t

(1)
p <

t
(2)
p < · · · < t

(i0)
p are the points such that at those points u(0, t) − u− changes signs, and in

each of these open sub-intervals (tp, t
(1)
p ) and (t(i)p , t

(i+1)
p ) (i = 1, . . . , i0) u(0, t) − u− > 0 or

u(0, t) − u− < 0 or u(0, t) − u− ≡ 0. For small ε, tp + ε must lie on some closed sub-interval
[t(i)p , t

(i+1)
p ] or open sub-interval (tp, t

(1)
p ). There is no harm in assuming tp + ε ∈ (tp, t

(1)
p ) (this

can be done by letting ε be sufficiently small). Denote tp + ε by t
(0)
p , then [tp + ε, tp+1] =

∪i0
i=0[t

(i)
p , t

(i+1)
p ].

If for each i (i = 0, 1, 2, . . . , i0), the following inequality holds:

I
(i)
0 :=

∫ t

t
(i)
p

sgn(vε(0, τ ) − u−)(f(vε(0, τ )) − f(u−))dτ ≤ Cε, t ∈ (t(i)p , t(i+1)
p ], (3.22)

then (3.16) is valid. Now we verify (3.22).
If in (t(i)p , t

(i+1)
p ), u(0, t) − u− ≡ 0, then for t ∈ (t(i)p , t

(i+1)
p ],

I
(i)
0 ≤ C

∫ t

t
(i)
p

|vε(0, t) − u−|dτ = C

∫ t

t
(i)
p

(H − Vε)(τ )dτ.

By the above inequality and (3.21), (3.22) is true.
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If in (t(i)p , t
(i+1)
p ), u(0, t)−u− < 0, then by the boundary entropy condition (2.2), f(u(0, t))−

f(u−) ≥ 0 for t ∈ [t(i)p , t
(i+1)
p ], thus from (3.21) and (3.12), it follows that sgn(vε(0, t) −

u−)(f(u(0, t))− f(u−)) ≤ 0. Therefore, for t ∈ (t(i)p , t
(i+1)
p ], we have

I
(i)
0 ≤

∫ t

t
(i)
p

sgn(vε(0, τ ) − u−)(f(vε(0, τ )) − f(u(0, t)))dτ

≤ C

∫ t

t
(i)
p

|vε(0, t) − u(0, t)|dτ ≤ C

∫ t

t
(i)
p

(H − Vε)(τ )dτ.

The above inequality and (3.21) gives (3.22).
If in (t(i)p , t

(i+1)
p ), u(0, t) − u− > 0, then by the boundary entropy condition (2.2), one gets

f(u(0, t)) − f(u−) ≤ 0, t ∈ (t(i)p , t(i+1)
p ]. (3.23)

Since the function e(t) defined by (3.21) is strictly decreasing on [tp, tp+1], by the proper-
ties of u(0, t), we have that the function u(0, t) − u− − e(t) changes its signs at most finitely
many times on [t(i)p , t

(i+1)
p ], in other words, [t(i)p , t

(i+1)
p ] can be decomposed as follows: [t(i)p ,

t
(i+1)
p ]=∪j

(i)
0

j=0[t
(i,j)
p , t

(i,j+1)
p ], where j

(i)
0 is a non-negative integer, t

(i,0)
p =t

(i)
p , t

(i,j
(i)
0 +1)

p =t
(i+1)
p ,

t
(i,1)
p < t

(i,2)
p < · · · < t

(i,j
(i)
0 )

p are the points such that at those points u(0, t)− u− − e(t) changes
signs and in each open sub-interval (t(i,j)p , t

(i,j+1)
p )(j = 0, 1, . . . , j

(i)
0 ), u(0, t) − u− − e(t) > 0 or

u(0, t)−u−−e(t) < 0 or u(0, t)−u−−e(t) ≡ 0. When u(0, t)−u−−e(t) > 0 or u(0, t)−u−−e(t) ≡
0 in (t(i,j)p , t

(i,j+1)
p ), by (3.12) and (3.21), we can get that for t ∈ [t(i,j)p , t

(i,j+1)
p ],

vε(0, t) − u− ≥ u(0, t) − u− − e(t) ≥ 0. (3.24)

From (3.23), (3.24) and (3.21), it follows that for t ∈ (t(i,j)p , t
(i,j+1)
p ],

∫ t

t
(i,j)
p

sgn(vε(0, τ )−u−)(f(vε(0, τ ))−f(u−))dτ≤
∫ t

t
(i,j)
p

sgn(vε(0, τ )−u−)(f(vε(0, τ ))−f(u(0, t)))dτ

≤ C

∫ t

t
(i,j)
p

|vε(0, t) − u(0, t)|dτ ≤ C

∫ t

t
(i,j)
p

(H − Vε)(τ )dτ ≤ C

∫ tp+1

tp

e(τ )dτ ≤ Cε. (3.25)

This implies that (3.22) is valid. When u(0, t)− u− − e(t) < 0 in (t(i,j)p , t
(i,j+1)
p ), by (3.12) and

(3.21), we have that for t ∈ (t(i,j)p , t
(i,j+1)
p ],

∫ t

t
(i,j)
p

sgn(vε(0, τ ) − u−)(f(vε(0, τ )) − f(u−))dτ

≤ C

∫ t

t
(i,j)
p

|vε(0, t) − u−|dτ ≤ C

∫ t

t
(i,j)
p

((u(0, τ ) − u−) + (H − Vε)(τ ))dτ

≤ C

∫ tp+1

tp

e(τ )dτ ≤ Cε. (3.26)

This shows that (3.22) holds.

3.2.4 The Case of (P4)

In this case, Ẋ(tp+1) ≤ 0. As in Case (P3), [tp + ε, tp+1] can be decomposed as follows:
[tp + ε, tp+1] = ∪i0

i=0[t
(i)
p , t

(i+1)
p ], where i0 is a nonnegative integer, t

(0)
p =tp + ε, t

(i0+1)
p =tp+1,

t
(1)
p < t

(2)
p < · · · < t

(i0)
p are the points such that at those points u(0, t) − u− changes signs and

in each open sub-interval (t(i)p , t
(i+1)
p ) (i = 0, 1, . . . , i0), u(0, t) − u− > 0 or u(0, t) − u− < 0 or

u(0, t) − u− ≡ 0.
As previously, we first estimate X(t)(t ∈ (t(i0)p , tp+1]). By the structure of the weak entropy

solution of (1.1), there exists t∗ ∈ (t(i0)p , tp+1) such that Ẍ(t) > 0 or Ẍ(t) ≤ 0 for t ∈ [t∗, tp+1].
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When Ẍ(t) ≤ 0 for t ∈ [t∗, tp+1], we have

X(t) ≥ b∗
tp+1 − tp

(tp+1 − t), t ∈ [tp, tp+1], (3.27)1

where b∗ = mint∈[tp,t∗] X(t) > 0.
When Ẍ(t) > 0 for t ∈ [t∗, tp+1] and Ẋ(tp+1) < 0, we have

X(t) ≥ b∗∗
tp+1 − tp

(tp+1 − t), t ∈ [tp, tp+1], (3.27)2

where b∗∗ > 0 is the minimum of b∗ and Ẋ(tp+1)(tp − tp+1).
When Ẍ(t) > 0 for t ∈ [t∗, tp+1] and Ẋ(tp+1) = 0, as in (P2), for any given constant

ε0, 0 < ε0 < X(t∗), there exists tε0 ∈ (t∗, tp+1) such that X(tε0) = ε0; furthermore, for
t ∈ (tε0 , tp+1], we also have

X(t) = X(tp+1) + Ẋ(tp+1)(t − tp+1) + Ẍ(θ)(t − tp+1)2/2 ≥ c(t − tp+1)2, θ ∈ (t, tp+1).
Accordingly,

X(t) ≥
⎧
⎨

⎩

aε0

tε0 − tp
(tε0 − t), t ∈ [tp, tε0 ],

c(t − tp+1)2, t ∈ (tε0 , tp+1]),
(3.27)3

where aε0 = min[tp,tε0 ] X(t) > 0.
From (3.27)1–(3.27)3 and Lemma 3.3, it follows that for t ∈ [tp, tp+1],

0 < (H − Vε)(t) ≤ C exp
{

− cαb∗∗
tp+1 − tp

tp+1 − t

2ε

}

:= e1(t) (3.28)1

provided Ẋ(tp+1) < 0, and

0 < (H − Vε)(t) ≤

⎧
⎪⎪⎨

⎪⎪⎩

C exp
{

− cαaε0

tε0 − tp

tε0 − t

2ε

}

, t ∈ [tp, tε0 ],

C exp
{−cα(t − tp+1)2

2ε

}

, t ∈ (tε0 , tp+1],

:= e2(t)

(3.28)2

provided Ẋ(tp+1) = 0.
Notice that e1(t) (in [tp, tp+1]), e2(t) (in [tp, tε0 ] or (tε0 , tp+1]) are strictly monotone func-

tions, respectively. Therefore, by using the same technique as in case (P3), from (3.28)1 or
(3.28)2, we can prove that the following is valid for t ∈ (t(i)p , t

(i+1)
p ] :

I
(i)
0 ≤

{
Cε, for i = 0, 1, 2, . . . , i0 − 1, i0 �= 0,

C(ε + ε1/2), for i = i0,
(3.29)

where I
(i)
0 is defined by (3.22). Thus (3.16) follows from (3.29).

3.3 More Shocks
Suppose that we have M smooth shock curves x = Xm(t) included in u in R+ × (tp, tp+1),
1 ≤ m ≤ M . According to the structure of the weak entropy solution of (1.1) and the definition
of tp and tp+1, we know that

0 < X1(t) < X2(t) < · · · < XM (t), t ∈ (tp, tp+1); (3.30)1
0 ≤ X1(tp) < X2(tp) < · · · < XM (tp); (3.30)2

0 ≤ X1(tp+1) ≤ X2(tp+1) ≤ · · · ≤ XM (tp+1). (3.30)3

The approximation vε to u is constructed as follows:

vε(x, t) = u(x, t) +
M∑

m=1

(Vε(x − Xm(t); u−
m, u+

m) − H(x − Xm(t); u−
m, u+

m)),
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where u±
m := u(Xm(t) ± 0, t) (m = 1, 2, . . . , M).

From (3.30)1–(3.30)3, we may choose the lower bound function of X1(t) as that of Xm(t)
(m = 2, 3, . . . , M) for t ∈ [tp, tp+1]. Then by an analogous argument to that used in Section 3.2,
and making use of Lemma 3.2 and Lemma 3.3, we can verify (3.9). The details are omitted.

This completes the proof of Theorem 3.1.

Remark 3.1 From the proof process of Theorem 3.1, we know the following fact: If the
inviscid solution includes the interaction that an expansion wave (including central rarefaction
waves) collides with the boundary x = 0 and the boundary reflects a new shock wave which
is tangent to the boundary (see Fig. 1(a),(b) and Fig. 2(a)), or includes some shock wave
which is tangent to the boundary and is not reflected by the boundary at this tangent time (see
Fig. 2(a), (b), (c)), then the error of the viscosity solution to the inviscid solution is bounded
by O(ε1/2) in L1-norm; otherwise, as in the initial value problem in [23], the L1-error bound is
O(ε| ln ε|).
Remark 3.2 The conclusion in this paper can be extended to more general initial bound-
ary problems, in which ub(t)(t > 0) is a piecewise constant function with a finite number of
discontinuous points.
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